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Abstract

Copying information is a fundamental task of biological systems that has to be per-
formed at a finite temperature. There is agreement that this fact alone implies a lower
limit on the error rate. However, contrasting results have been obtained regarding
how this limit is approached. For instance, it is not clear when it can be achieved in
a slow, quasi-adiabiatic regime or in a fast and highly dissipative one. In this paper,
by means of analytical calculations and numerical simulations, we unravel a common
feature of stochastic copying systems: the existence of two radically different copying
modes. The first is based on different kinetic barriers, and is characterized by a high
speed and high dissipation close to the lowest possible error. The second is based on
energy differences between right and wrong copies, and is characterized by the fact
that minimum copying error can be achieved at low speed and low dissipation. In
models characterized by a single copying step, we demonstrate that these modes are
alternative, i.e. they cannot be mixed to further reduce the minimum error. However,
the two modes can be combined in multi-step reactions, such as in models implement-
ing error correction through a proofreading pathway. By analyzing experimentally
measured kinetic rates of two seemingly similar DNA polymerases, T7 and Polγ, we
argue that one of them operates in the kinetic and the other in the energetic regime.

Keywords: polymerization | proofreading | non-equilibrium | cellular information pro-
cessing

1 Introduction

Living organisms need to process information in a fast and reliable way in order to
perform biological functions. Copying information is a task of particular relevance, as
it is required for the replication of the genetic code, which ensures heritability; and
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the transcription of DNA into mRNA and its translation into a chain of aminoacids,
ultimately folding to form a protein. In general, biological copying is carried on by
thermodynamic machines (such as polymerases and exonucleases) that operate at a
finite temperature, so that a certain amount of errors is unavoidable. However, reli-
ability is fundamental in the examples above, since a large error rate η can result in
the costly (or harmful) production of a non-functional protein. To this aim, cells have
developed complex mechanisms to reduce copying errors to values as low as η ∼ 10−4

for protein transcription-translation [1] and η ∼ 10−10 for DNA replication [2]. Such
mechanisms include several discrimination steps [1, 2], as well as alternative pathways
to undo wrong copies as in kinetic proofreading [2, 4], or even more complex error
correcting schemes such as backtracking [5]. Despite the complexity of these copying
schemes, some of their underlying thermodynamic principles can be understood by
means of simple stochastic models.

A key quantity to understand the thermodynamics of copying is the dissipation
per copied bit ∆S. The reason is that information processing and thermodynamics
are linked by Landauer’s principle [6], which establishes that energy is dissipated when
information is erased. As later clarified by Bennett [7], information can actually be
copied adiabatically. However, in the biophysics literature, where the typical problem
of interest is copolymerization, contrasting results have been obtained regarding this
issue. The copying scheme proposed in Hopfield’s seminal proofreading paper [2]
reaches its minimum error in an adiabatic limit of zero velocity v and zero dissipation
[8]. However, in a seemingly similar model proposed few years later by Bennett [1],
later termed copolymerization model [10, 11], the minimum error is achieved in a
highly dissipative regime, where both the velocity and the dissipation diverge. In an
adiabatic copying scheme, high copying fidelity comes at the cost of low copying speed,
while in a very irreversible one it comes at the expense of high dissipation of chemical
energy.

Some of the biological literature has favoured the viewpoint that the minimum
error is achieved in near equilibrium conditions, see for example [8]. This view is
however not unanimous [12]. Furthermore, recent biophysical literature supports a
highly dissipative minimum error limit [13, 10, 14, 11]. Such contrasting results per-
sist when copying schemes are generalized to include kinetic proofreading. While all
models agree on the fact that, at low error rates, proofreading schemes are highly dis-
sipative, the proofreading model in [1] dissipates systematically less energy than the
corresponding copying scheme. This clearly contrasts with the outcome of Hopfield’s
model, in which at low errors dissipation occurs only in the proofreading step [2]. A
recent study shows how the copying step in a proofreading scheme can be made faster,
at the cost of a slightly higher error rate [15].

In this paper, we show how some of these contrasting points of view can be rational-
ized by making a clear distinction between two different modes of discrimination, that
we term energetic discrimination and kinetic discrimination. In the former mode, an
energy difference between the correct and wrong base matching is used to discriminate
them. In this case, the minimum error is achieved when copies are produced adiabat-
ically, with a low copying speed and corresponding low dissipation. Conversely, the
latter mode uses an energy barrier for discrimination, resulting in a large dissipation
and velocity when approaching the minimum error. Kinetic discrimination is at the
core of the copying schemes in [1, 10, 11]. Instead, the original proofreading model [2]
can be seen as the combination of an energetic discrimination step, corresponding to a
reversible copy, followed by a kinetic discrimination step in the proofreading pathway.
Remarkably, by analyzing experimentally measured rates of DNA duplication, we find
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that copying in two seemingly similar systems (T7 and Polγ) occur one in the kinetic
and the other in the energetic regime.

We begin our study by presenting a simple model for copying a single bit of in-
formation in the spirit of those proposed in [7] and later in [16, 17, 18], see scheme
in Fig 1a. In this model, a bio-machine such as a polymerase binds and unbinds
monomers of different species to a template, trying to match it. We then move to the
case of copolymerization (Fig. 1b), where a polymerase has to grow a polymer chain
to match a template strand. The same binding/unbinding rates defined for the single
bit case here represent rates of incorporation/removal of monomers Finally, we discuss
two different proofreading schemes, 1c and 1d, where the polymerase is assisted by
an exonuclease that tends to remove wrong monomers. The two models differ by the
absence or presence of an intermediate state in the copying process.

Fig. 1: Copying and proofreading schemes. a) Stochastic copying of a single bit.
The lower-vertex triangle represents a bio-machine, as a polymerase,
binding or unbinding one of two kinds of monomers to match a tem-
plate. This reversible process is characterised by the rates of addition
and removal of right and wrong matches kr/w± . b) Copolymerization.
A template strand (bottom) is copied into a new strand (top) with the
assistance of a polymerase. The addition and removal rates kr/w± are
biased by the template towards addition of right matches (r) and re-
moval of wrong ones (w). c) & d) Proofreading schemes. In addition to
a copying polymerase there is an uncopying exonuclease, represented by
an upper-vertex triangle and characterized by the rates k̃r/w± . The ex-
onuclease tends to remove monomers with a bias towards wrong copies.
The difference between c) and d) is the absence or presence of an unbi-
ased intermediate state in the monomer incorporation by the polymerase,
characterised by rates k̄r/w± .
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2 Results

2.1 Copying strategies of a stochastic bit
We start our analysis with a simple example in which a single bit of information has to
be copied stochastically. The copying machine is described as a three-states system.
Two of the states correspond to the physical condition in which the right (r) or wrong
(w) molecule is attached to the machine. We also consider a “blank” and distinct third
state (∅), representing the state of the system before a matching is done.

To help physical intuition and following [1], we define the parameters of the model
in terms of the free energy differences among the three states. A sketch of the free
energy landscape of the model is presented in Fig. 2a. Despite its simplicity, the
interest of this model is that discrimination between the right and the wrong state can
be achieved in two ways: via the difference in barrier height δ, or via the difference in
energy levels of the final states γ. The energy difference ε can be thought as a chemical
driving; while it does not affect discrimination in this model, it will play a crucial role
in copolymerization.

The four rates kr+, kr−, kw+ and kw−, connect the unbound state with the right and
wrong states respectively. They can be written from the energy barriers in Fig. 2a by
means of Kramer’s formula

kr+ = ωeε+δ ; kr− = ωeδ ; kw+ = ωeε ; kw− = ωeγ . (1)

where we also introduced an overall rate unit ω. The three-state master equation
governing the dynamics of the probabilities pr and pw of finding the system in the
right or wrong state reads

ṗr = (1− pr − pw)kr+ − kr−pr (2)
ṗw = (1− pr − pw)kw+ − kw−pw

where the equation for the probability of the unbound state has been eliminated by
means of the normalization condition. To study how the discrimination mechanisms af-
fects the copying accuracy, we study the dynamics when the system is initially prepared
in the unbound state, corresponding to the initial condition pr(t = 0) = pw(t = 0) = 0.
The explicit analytical solution of the system of equations (2) with such initial condi-
tion and for a generic choice of the parameters is presented in Supplementary Infor-
mation (SI).

We now focus on the dynamics of the error, which is defined in terms of the state of
the system as η(t) = pr(t)/[pr(t)+pw(t)]. The importance of η(t) is that, to maximize
the copying accuracy, the copying reaction should be arrested when the error is at
its minimum value. Indeed, in many concrete cases, dynamics of the form (2) will
be carried over only for a limited time. After this time, the copying machine will
terminate its task, and the system will be quenched into either a right or wrong copy
outcome. This can be thought as arbitrarily increasing the energy of state ∅ in the
diagram of Fig. 2a, so that the values of pr, pw and thus the error η will be frozen, see
e.g. [7]. For example, in an enzymatic reaction, the termination event corresponds to
the transformation of one of the two bound states into a product. In [7], where bits
are encoded in one-domain ferromagnets, termination corresponds to the decoupling
from an external transverse field.

The essential features of this copying system can be understood by discussing the
behavior of the error in the limiting cases of very short time and very long times.
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Fig. 2: a) Energy diagram for the single bit copying model. The barrier height
difference δ, energy difference between right and wrong states γ, and the
chemical driving ε are shown. b) Time-evolution of the error in a single
bit copy for three parameter choices which represent the qualitatively
different regimes: γ < δ (green curve, kinetic discrimination, γ = 3 and
δ = 5.5), γ > δ (blue curve, energetic discrimination, γ = 8 and δ = 5.5),
and the limiting case γ = δ = 5.5 (black curve). The other parameters
are ε = 5 and ω = 4.

At short times t � 1/ω the population of the right and wrong states will be simply
determined by the transition probabilities to these states (forward kinetic rates) mul-
tiplied by the time, i.e. pr = tkr+ and pw = tkw+. To shorten the notation, we define
the function f(x) = e−x/(1 + e−x) mapping energy differences into the corresponding
errors. The short-time error is then given by η(t→ 0) = f(δ). In the opposite limiting
case of t� 1/ω, the system will reach equilibrium and the ratio of probabilities can be
determined by imposing detailed balance, pw/pr = eγ . This yields η(t→∞) = f(γ).

For arbitrary times, one can analytically show that η(t) is a monotonic function of
time for any choice of the rates (see SI). This means that if f(δ) < f(γ) (i.e., if δ > γ)
the error is monotonically increasing over time from f(δ) to f(γ). On the other hand,
if f(δ) > f(γ) (i.e., if δ < γ) the error is monotonically decreasing from f(δ) to f(γ).
Looking at Eq. 1, one can easily show that these conditions are equivalent to kr− > kw−
and kr− < kw− respectively, independent of the choice of the on-rates.

The implications of this are the following. When the barrier difference δ is larger
than the energy difference γ, the error is increasing with time, so that an optimal
accuracy in the copying scheme requires stopping the binding-unbinding process as
fast as possible. We refer to this as a kinetic discrimination regime. Conversely, when
γ > δ the error is decreasing with time and to obtain the minimum error the reaction
has to reach equilibrium before being terminated, which requires an arbitrarily large
time. We refer to this as energetic discrimination. In the limiting case δ = γ the error
is independent of time, so that the termination time is irrelevant for the purpose of
minimizing the error. These three behaviors are exhibited in Fig. 2b for a particular
choice of parameters.

At the simple level of this model, the parameter space can be divided in two regions,
depending on whether small error can be achieved via kinetic discrimination (and
thus fast copying) or energetic discrimination (quasi-static copying). The possibility
of improving the error rate by using both mechanisms is ruled out. For the sake of
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simplicity, we did not model explicitly the termination step. Notice however that in
an energetic discrimination scheme, the quench can be performed slowly, and thus
without dissipating in principle [7]. In the kinetic scheme, the quench has to be fast
and will be highly dissipative. We will show in the following that similar features are
present in more complex copying systems.

2.2 Kinetic and energetic discrimination in copolymerization
Copolymerization can be thought of as an extension of the model of the previous
section to the case where many bits are copied in series. In copolymerization, a
polymerase continuously adds and removes monomers to a tip of the growing copy
strand, trying to match them with the monomers on a template strand (see Fig.
1b). Because of thermal fluctuations, this matching process exhibits errors, which will
affect the free energy of the chain. However, existing studies assumed for simplicity
that chains incorporating different amounts of errors were iso-energetic [1, 13, 10, 11].
By relaxing this assumption, we explore the possibility of a trade-off between kinetic
and energetic discrimination, as well as studying the differences between these two
copying schemes.

The copolymerization process is defined by the incorporation and removal rates of
right kr± and wrong kw± matching monomers. We assume that the rates depends only
on whether there is a match with the underlying template, and not on the specific
type of monomer (this assumption is relaxed in [10]). In analogy with the previous
section, the rates are defined by the energy landscape of Fig. 2a and Eq. 1. This
implies that the chemical driving for right and wrong bases are given by ε and ε − γ
respectively. Also in this case, discrimination can occur through the barrier height
difference δ, or the higher energy γ that a wrong matching of monomers has over a
right matching. Following [1], we call [&] an arbitrary state of the growing chain in the
presence of the template, and [&r] and [&w] the states in which a right or wrong base
has been added. At steady state there will be net fluxes of incorporation of the correct,
Jr = [&]kr+ − [&r]kr−, and wrong, Jw = [&]kw+ − [&w]kw−, monomers. By imposing the
relations between the fluxes and the error, Jr = (1− η)v[&] and Jw = ηv[&], being v
the velocity of copy, the steady state solution can be explicitly calculated.

The two main quantities on which we focus are the average copying velocity v,
and the rate of entropy production Ṡ. The latter quantity is a measure of dissipation
that can be also thought as the rate of energy that has not been used in performing
chemical work [19]. In particular, we want to study their dependence on the error η.
It is straightforward to show that v = kr+− (1− η)kr−+ kw+ − ηkw− [1, 11]. The entropy
production rate Ṡ can be calculated and is

Ṡ = v∆S = v(1− η)ε+ vη(ε− γ) + vH(η) (3)

where ∆S is the dissipation per step, and H(η) = −η log(η) − (1 − η) log(1 − η)
is the Shannon entropy corresponding to an error rate η. The first and the second
contributions to the entropy production in the right hand side of Eq. (3) correspond
to the distinct chemical driving forces of right and wrong bases, multiplied by the flux
of right and wrong incorporated bases. The fact that in our case right and wrong
bases have different drivings is the key difference with previous studies. As discussed
in [1, 10, 11], the last term of Eq. (3) corresponds to the information entropy growth
due to incorporation of errors, hence information, into the chain.

The behavior of the entropy production per copied base ∆S and the velocity v as
a function of the error rate η are illustrated in Fig.3a and 3c, for a fixed value of γ and



2 Results 7

Fig. 3: a) Dissipation per step in the copolymerization model. In all curves
γ = 5, while δ varies as shown in the legend. All curves tend to zero at
the same value η = f(γ) ≈ 6.7 · 10−3. Blue curves are in the energetic
discrimination region, γ > δ, while green curves are in the kinetic re-
gion δ > γ. b) Phase diagram in the γ-δ plane, showing the parameter
values compatible with a given error rate η ∼ f(−7) ≈ 9 · 10−4. The
disconnected kinetic discrimination and energetic discrimination regions
are shown. Estimated values of (γ, δ) for the Polγ and T7 polymerases
are also shown. c) Behavior of the average copying velocity v for the
same parameter choices as in a).

several values of δ. Tuning γ and δ corresponds to varying the range of errors η being
physically admissible. In particular, one finds the following condition on the error

min [f(δ), f(γ)] < η < max [f(δ), f(γ)] , (4)

where f(x) has been defined in the previous section. A detailed derivation of formula
(4) is presented in SI. To better understand the implications of the dissipation and
velocity curves in Fig. 3 and formula (4), it is useful to first discuss two limiting cases:
the highly dissipative limit η → f(δ), and the adiabatic limit η → f(γ).

In the limit η → f(δ), the chemical driving ε, the reaction velocity v and the
dissipation per step ∆S diverge (see Fig. 3a and 3c, where for all choices of δ the
curves diverge as η → f(δ)). From the explicit expression of the chemical driving
(presented in SI) it can be shown that it diverges as ε ∼ − log |η− f(δ)|. Substituting
this expression into the equation for the dissipation per step, Eq. (3), shows that also
∆S diverges as

∆S ∼ ηε ∼ η log |η − f(δ)| for η → f(δ). (5)

Note that in this regime, as the chemical driving is very high, ε � 1, the Shannon
entropy term H(η) in Eq. (3) is negligible, and the dissipation is dominated by the
chemical terms. As an effect of the strong driving, the velocity also diverges as |η −
f(δ)|−1.
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Conversely, in the limit η → f(γ), both the reaction velocity v and the dissipation
per step ∆S vanish, as the system approaches an adiabatic regime (see Fig. 3a and 3c,
where all curves collapse to zero for η = f(γ)). This means that all the chemical energy
is invested in copying the information, none being wasted. The chemical driving in
this limit is equal to

ε = log(1− η) = log[1− f(γ)] < 0 for η = f(γ). (6)

Here ε is small and negative, in order to compensate for the effective positive driving
caused by the Shannon entropy term in Eq. (3). The entropy production due to the
error incorporation in the chain is balanced with negative chemical drivings in order
to give small error in an adiabatic regime where ∆S = 0 and v = 0.

From the inequality (4), we can explore the values of γ and δ that are compatible
with a given error η. A given copy error η can be obtained with different choices of
the discrimination parameters δ and γ by changing the driving ε. It is straightforward
to derive from (4) that the values of γ and δ must satisfy either of the two conditions
γ < f−1(η) < δ or δ < f−1(η) < γ, where f−1(η) = log(1 + 1/η) is the inverse of the
function f(x). These conditions define the two disconnected regions of the phase space
in Fig. 3b. We then define the kinetic discrimination region of parameter space as the
one characterized by δ > γ, and the energetic discrimination region as the one where
δ < γ. Different points in the phase space for a desired copy error η are characterized
by different values of the entropy production per copied base ∆S, as well as different
copying velocities v.

A main new outcome of this analysis is that, depending on the sign of δ − γ,
discrimination has a drastically different behavior in proximity of the minimum error.
In the kinetic region, the minimum error is attained when η → f(δ). This implies
a trade-off between small error and high entropy production, and thus high chemical
energy spending. As the error reaches its lowest possible value f(δ), both quantities
diverge. Note however that even in the kinetic region such monotone relation between
error, dissipation and velocity only holds for small errors, since at larger errors the term
H(η) is not negligible and causes a non-monotonic behavior of ∆S [1]. Conversely, in
the energetic region, accurate copying comes at the cost of the copying velocity, which
goes to zero at the minimum error η = f(γ).

We mention here that the copolymerization model can be thought of as a steady-
state version of Hopfield’s model (see SI for details of the mapping). Indeed, a main
difference between Hopfield’s copying model [2] and the copolymerization model [1]
is that the former excludes forward discrimination (i.e. δ = 0 in our language), but
considers the different energy of the bound states corresponding to the different bases.
The latter assumes the bound states to be isoenergetic (γ = 0) but reachable via
different energy barriers.

2.3 Discrimination in DNA polymerase copying
To show the biological relevance of our framework, we now analyze and compare two
specific examples: DNA replication of the phage T7 [2, 21], and replication of human
cells DNA carried by the polymerase Polγ [20].

A recent study of T7 [20] points at the rapid unbinding of nucleotides by strong
and asymmetric backward rates as the leading mechanism determining low copying
errors. We derive the copolymerization rates of T7 from the experimental values in
[20]. To this aim, we consider the nucleotide binding to be very fast and at equilibrium,
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with dissociation constants Kr = 28µM and Kw = 200µM for right and wrong base
matching. We study the error rate in a range of nucleotide concentrations, as they can
sensibly vary depending on the conditions [20]. Considering nucleotide concentrations
in a range of [dNTP ] ∼ 0.5−50µM we obtain the binding states 1/(1+Kr/w/[dNTP ])
of right and wrong base matching. Multiplying these by the forward rates (360Hz and
0.2Hz for right and wrong bases respectively) we obtain k

r/w
+ . The experimentally

measured backward rates are kr− ≈ 2Hz and kw− ≈ 0.04Hz [20]. Substituting these
values in the formula for the error rate results in an error range η ∼ 10−6 − 10−4,
in agreement to the estimate in [2]. Notice that usual estimates of the error assume
linear binding, approximation valid for low [dNTP ], which in our case corresponds
to the lowest end of the error range. The resulting polymerization velocities are v ∼
5−250bps (copied bases per second), in agreement with the saturation polymerization
rate measured in [20]. By inverting Eqs.(1), we can infer that the energetic and kinetic
discrimination factors are γ ≈ 14 and δ ≈ 8 respectively. Since γ > δ, we conclude
that the polymerase operates in the energetic regime (see Fig. 3b).

A recent study [10] analyzed DNA duplication by Polγ with a variant of the copoly-
merization model, where different monomer species are characterised by different rates.
Parameter values were taken from measurements in [21]. Agreement with experimental
data was obtained under the assumption that the copy be iso-energetic with respect
to the error rate, that is γ = 0. In order to compare with the T7 case, we simplify
their analysis by considering an average over the different monomer species. To this
aim, we first average the dissociation constants of right and wrong bases, and multi-
ply them by the average polymerization constants of right and wrong bases. Using
the same chemical driving determined for T7, ε ≈ 5, we obtain a range of error rates
η ∼ 10−5−10−3, which in the limit of low [dNTP ] agrees with the estimates in [21, 10].
The resulting kinetic discrimination parameter is δ ≈ 11. As γ = 0, the polymerase
Polγ lies in the kinetic discrimination region of parameter space (Fig. 3b).

The estimates above indicate that the two polymerases operate in the two differ-
ent regimes proposed in the previous section. In particular, Fig 3b shows the location
in phase space of the operating regimes of the two polymerases. While the two poly-
merases are characterized by a similar error rate, the fact that they operate in different
regimes implies that they experience different trade-offs when some external param-
eter is varied. For example, a smaller error of the T7 polymerase is achieved when
reducing the chemical driving, which in practice can be obtained by lowering the nu-
cleotide concentration. Reducing [dNTP ] reduces both the error and the dissipation
∆S, at the cost of a smaller polymerization speed v. This situation is qualitatively
similar to that of the blue curves in Figs. 3a and 3c. Conversely, error reduction for
Polγ requires a stronger driving, hence dissipation, as already observed in [10]. This
in turn gives a faster polymerization rate, in analogy with the green curves of Figs. 3a
and 3c.

Let us now discuss the robustness of this conclusion with respect to the assumptions
made and the uncertainties in the measures. In the case of T7, our estimates of γ and
δ are robust to changes of [dNTP ], which mainly affects the driving ε. For Polγ
however the value γ = 0 has, as in previous models [10], been assumed rather than
inferred from measures. We were unable to find measures for off-rates allowing for a
direct estimation of this parameter. However, our estimate leads to a polymerization
velocity compatible with previous studies [10] and experimental evidences [21]. Note
that only a very large value γ > δ = 11 would invalidate the hypothesis that Polγ
operates in the kinetic region. Furthermore, an energetic mechanism (depending on
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the value of γ) would yield a polymerization velocity too low to match the observed
value of 37 bps [21].

In vivo DNA copying achieves lower error rates than those described so far. This
is done by the usage of error-correcting schemes such as proofreading. In the next
section we discuss how the strategies so far presented are combined in two proofreading
examples.

2.4 Combining copying strategies in proofreading schemes
So far, we have shown that the kinetic and energetic discrimination mechanisms cannot
be combined to further reduce the errors in the same reaction, as expressed in Eq. 4.
However, the two mechanisms can be combined in more complex multi-step copying
schemes. In this section, we explore this possibility in two simple examples of copying
schemes involving a proofreading step.

In kinetic proofreading, an initially copied base can be removed via an alternative
“proofreading” pathway, typically assisted by an exonuclease, see Fig. 1c and 1d.
Such erasing pathway is also characterized by a discrimination which, a priori, can
be energetic γp or kinetic δp, a distinct time-scale 1/ωp, and a (backward) driving εp.
In an effective proofreading scheme, the minimal copying error of Eq. 4 is reduced
by another discrimination factor, which a priori can also be energetic f(γp) or kinetic
f(δp). We discuss two different schemes of proofreading. In the first, represented in
Fig. 1c, there are no intermediate states between the pre-copied and copied states, so
that the proofreading pathway carried by the exonuclease and characterized by k̃r/w±
has the same structure as the copying pathway, apart from the backward driving. A
restricted version of this model allowing only for kinetic discrimination in copying and
proofreading was originally studied in [1]. Here, we allow both pathways to have both
types of discriminations. In the second scheme, sketched in Fig. 1d, the first copying
step leads to an intermediate state. The second step takes this intermediate state
into its final form without discrimination between right or wrong bases, and is only
characterized by a chemical driving ε∗ and a time-scale 1/ω∗ which define the rates
k̄
r/w
± . We take the proofreading reaction to be the same in the two cases. The scheme

with an intermediate step has the same structure of Hopfield’s proofreading model
[2], where he focused on a regime where the copying step was implemented through
energetic discrimination. Details on the parametrization are in Materials and Methods.

In both proofreading models, the entropy production rate Ṡ and the velocity v can
be analytically expressed with a procedure similar to that used for the copolymeriza-
tion model (see SI). A main difference is that fixing the discriminations δ, δp, γ, γp and
the error rate η does not fully specify Ṡ and v due to the presence of the additional
free parameters presented above (the proofreading timescales and chemical drivings).
With a numerical algorithm described in the SI, we minimize for each error rate η the
entropy production per step ∆S over the free parameters, thus obtaining the curves
of minimum dissipation vs error shown in Fig. 4.

By a systematic analysis of parameter space it is easy to reach the conclusion that
the proofreading step always uses kinetic discrimination. As shown in detail in SI, there
are no regimes in any of the two models where it is possible to lower the copying error
by performing energetic discrimination in the proofreading step. That is, the standard
copying error can never be reduced by a factor f(γp). It is however possible to obtain
error reduction with a factor f(δp), corresponding to kinetic discrimination in the
proofreading step. As kinetic discrimination is a very dissipative process this justifies
the well known fact that a proofreading scheme requires an additional energy input.
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Fig. 4: a) Minimum dissipation per step in the proofreading model without an
intermediate step, Fig. 1c. For all curves, we chose γp = 0 and δp = 5.
In the case of energetic discrimination of the copying step and kinetic
discrimination of the proofreading step (energetic-kinetic), the other pa-
rameters are γ = 5, δ = 0. In the kinetic-kinetic case, the other parame-
ters are γ = 0 and δ = 5. We see how the energetic-kinetic scheme does
not reduce the error beyond the standard value f(γ), while the kinetic-
kinetic scheme reduces it beyond f(δ) down to f(δ)f(δp). b) Minimum
dissipation per step in the proofreading model with an intermediate step,
model d in Fig. 1. Parameters are the same as in panel a), but in this
case both schemes reduce the error by f(δp). In the kinetic-kinetic curve
down to f(δ)f(δp) and in the energetic-kinetic down to f(γ)f(δp).

An intuitive explanation stems from the fact that proofreading implies a backward
flux on the polymerization process, i.e. proofreading is a mechanism to undo wrong
copies. This means that the copying and proofreading pathways together constitute
loops carrying net probability currents (see Fig. 2c and 2d), which implies that their
dynamics must be dissipative. Such result is also consistent with Landauer’s principle
[6] as, unlike copying, the proofreading step essentially involves erasure of information.

We have shown that proofreading is a dissipative process and only operates through
kinetic discrimination. But the question remains on whether it can be freely combined
with adiabatic (energetic) and dissipative (kinetic) copying. By numerically exploring
the parameter space, we could show that while proofreading is always compatible with
dissipative copying, it is only compatible with adiabatic copying when an intermediate
state is present. In other words, the critical error of the energetic-kinetic curve in Fig.
4a, is simply f(γ), and so kinetic proofreading is not effective. The same curve in
the presence of an intermediate state (Fig. 4b) presents a minimum error equal to
f(γ)f(δp) ≈ f(γ+ δp). The necessity of an intermediate state for the energetic-kinetic
scheme can be intuitively understood as follows. Since effective proofreading is always
kinetic, it must be performed very fast. On the other hand, energetic copying requires
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a long relaxation time. As a consequence, both reactions can not be combined in
parallel unless an additional step from which the proofreading step flows is added.
The combination of kinetic proofreading with an adiabatic copying step has the clear
advantage of a lower dissipation as compared to its combination with a dissipative
copying step (see Fig. 4b, green vs. blue lines).

3 Discussion

In this paper, we analyzed stochastic models for biological copying systems. Our main
finding is that each copying step in these models can be unambiguously classified into
one of two radically different classes, that we termed kinetic and energetic discrimina-
tion. Kinetic discrimination exploits energy barriers; in this regime, both the velocity
and the dissipation per copied monomer diverge when the error approaches its min-
imum. Conversely, energetic discrimination exploits energy differences between right
and wrong copies, and is characterized by a slower and less dissipative copying as
the error approaches its minimum value. The existence of an energetic regime in the
copolymerization model complements the view in the literature [1, 10, 11] that low
copy errors are achieved only in a highly dissipative regime. It also demonstrates how
entropy driven growth, a phenomenon studied in the large error limit of the isoener-
getic model [1, 13, 10, 14], can indeed be exploited to reliably copy information. In
this regime, copolymerization is also compatible with the principles of reversible com-
puting, which state that a copy can be performed adiabatically since no information
erasure is involved [7].

The analysis of measured kinetic rates of two DNA polymerases, T7 and Polγ,
shows that the first operates in the energetic regime, while the second in the kinetic one.
This shows how both mechanisms can be used by real systems. The copolymerization
model we used can be readily generalized to account for different kinetic rates of
different nucleotides, as in [10]. Such generalization would not alter qualitatively our
result, as the same analysis can be performed separately for each nucleotide species.
It is known that very low errors can be achieved in multi-step reactions [2, 24], the
prime example being kinetic proofreading. Our study of two-steps and three-steps
proofreading reactions combining both regimes constitutes a proof of principle that
the two regimes defined in this paper are present and can help analyzing the parameter
space of more complex copying reaction schemes.

We conclude by mentioning that, while we focused here on biological copying
processes, the conceptual framework we presented can be applied to a wider range of
biological problems. Indeed, most of the fundamental thermodynamical features of
biological copying are actually related to a discrimination process operating at a finite
temperature. These features can thus be extended to cases in which discrimination is
not used to copy information, but rather to perform some other biological task. A well
studied example is the discrimination of antigens by T-cell receptors, a system which
has been shown to use a proofreading mechanism [23]. Other cases of interest come
from neural dynamics. For example, it has been shown that discrimination of a binary
input signal can be explained by a model consisting of a bi-stable stochastic neural
circuit [25]. Finally, a recent advance has revealed a trade-off between adaptation error
in bacterial chemotaxis and dissipation [27], similar to the behavior of copying in the
kinetic regime. In general, at the sub-cellular level, thermal fluctuations dominate and
impose constraints on biological tasks. While the thermodynamics of bio-mechanical
systems such as molecular motors is well understood [26], the role of fluctuations in
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biological information processing presents still many open questions. Our work shows
that the emerging trade-offs may be complex, and depend on the region in parameter
space where the system operates.

4 Materials and Methods: details of proofreading schemes

In the proofreading scheme without intermediate states, there are two pathways. The
standard copying pathway carried by the polymerase is characterized by the rates
in Eq. 1. The proofreading pathway assisted by the exonuclease is determined by
additional four rates parametrized as:

k̃r− = ωpe
εp−δp ; k̃r+ = ωpe

−δp ; k̃w− = ωpe
εp ; k̃w+ = ωpe

−γp . (7)

Notice that, at variance with the rates in Eq. (1), here the definition is such that
εp > 0 corresponds to a backward driving. The parameters δp, γp and ωp have the
same meaning as in Eq. 1.

In the proofreading scheme which incorporates an intermediate state, there are
three sets of rates. The first set are the copying rates to the intermediate state, these
are those of the standard copying scheme given in Eq. 1. The second set corresponds
to the copying from the intermediate to the final state. These rates have a forward
driving ε∗ and a time scale 1/ω∗ while, in analogy with Hopfield’s original model [2],
they exhibit no discrimination:

k̄r+ = ω∗eε
∗

; k̄r− = ω∗ ; k̄w+ = ω∗eε
∗

; k̄w− = ω∗. (8)

The third set of parameters are the four proofreading rates from the final state to the
initial state, and are the same as in the proofreading scheme above, Eq. (27).
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6 Supplementary Information

This document contains additional details and derivation of the results presented in
the paper “Energetic vs. kinetic discrimination in biological copying”. The document
is organized as follows. Section 1 presents a full solution of the single bit copying model
(model A in Fig. 1 of the main text), and a demonstration that the error is always a
monotonic function of time. Section 2 details results on the co-polymerization model
(model B in the main text). Section 3 illustrates the mapping between Hopfield’s and
Bennett’s copying schemes. Finally, section 4 and 5 present details on the proofreading
models (models C and D in the main text, respectively).

6.1 Stochastic copying of a single bit
We wish to demonstrate that, for any choice of the rates, the solution of the system
of differential equations:

ṙ = kr+(1− r − w)− kr−r
ẇ = kw+(1− r − w)− kw−w. (9)

with initial condition r(t = 0) = w(t = 0) = 0 leads to a time dependent error

η(t) =
w(t)

r(t) + w(t)
. (10)

being a monotone function of time for all t > 0. In particular, η(t) either strictly
increasing, strictly decreasing or constant depending on the choice of the parameters.

The solution of the system of equations (9) can be obtained with standard methods.
First of all, the steady state solution is:

req =
1

1 +
kr−
kr+

+
kr−k

w
+

kr+k
w
−

weq =
1

1 +
kw−
kw+

+
kw−k

r
+

kw+k
r
−

. (11)

Upon defining δr = r − req and δw = w − weq the time-dependent distances from the
steady state, a lengthy but straightforward calculation leads to

δr(t) =
N−

{
−req +

weq
2kw+

[
q +

√
q2 + 4kr+k

w
+

]}
eλ+t

4 + q2

kr+k
w
+

(12)

+
N+

{
−req +

weq
2kw+

[
q −

√
q2 + 4kr+k

w
+

]}
eλ−t

4 + q2

kr+k
w
+

δw(t) =
−N−

(
q +

√
q2 + 4kr+k

w
+

){
−req +

weq
2kw+

[
q +

√
q2 + 4kr+k

w
+

]}
eλ+t

2k+
r

(
4 + q2

kr+k
w
+

)
−

N+

(
q −

√
q2 + 4kr+k

w
+

){
−req +

weq
2kw+

[
q −

√
q2 + 4kr+k

w
+

]}
eλ−t

2k+
r

(
4 + q2

kr+k
w
+

)
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where we defined the eigenvalues

λ± =
−Σ±

√
Σ2 − 4c

2
(13)

with Σ = kr+ + kr− + kw+ + kw− and c = (kr+ + kr−)(kw+ + kw−)− kr+kw+, and the quantities

q = (kr+ + kr− − kw+ − kw−)

N± = 2 +
q

2kr+k
w
+

(
q ±

√
q2 + 4kr+k

w
+

)
. (14)

We now study the sign of the derivative of the error η(t). Clearly, its sign is the
same as the sign of the derivative of the function

f(t) =
w(t)

r(t)
=
weq + δw(t)

req + δr(t)
. (15)

The derivative of f(t), before any simplification, reads:

f ′ = D−2
[
2k+
w(k−w − k−r )(k−wk

+
r + k−r (k−w + k+

w))e−(3Σ+
√
Q)t/2

]
{
− 2Q2e(Σ+

√
Q)t/2 + eΣt[kr−

2 + kw−
2 + kr−(−2kw− + 2kr+ − 2kpw +

√
Q)

+ (kr+ + kw+)(kr+ + kw+ +
√
Q) + kw−(−2kr+ + 2kw+ +

√
Q)]

+ e(Σ+
√
Q)t[kr−

2 + kw−
2 − kw−(−2kw+ + 2kr+ +

√
Q)

− (kr+ + kw+)(−kr+ − kw+ +
√
Q) + kr−(−2kr+ + 2kw− + 2kw+ +

√
Q)]
}

(16)

where Σ and q are defined above, and we have also defined the function of the rates
Q = q2 +4kr+k

w
+. The denominator D has a complicated expression that we omit since

it is squared, hence it does not contribute to the sign. In the nominator, the term in
square brackets clearly has the sign of kw−−kr−. We now move to the study the sign of
the term in curly brackets, which can be expressed in terms of hyperbolic functions as

{} = e
1
2

(Σ+
√
Q)t
(
−2Q+ 2eΣ t

2

[
Q cosh(

√
Qt/2)−

√
QΣ sinh(

√
Qt/2)

])
(17)

The prefactor is positive, and we are left with the two terms inside the parenthesis.
The first is clearly negative. To determine the sign of the second, particularly the
term in brackets, one should note that sinh(x) > cosh(x) for all positive x, and that
Σ >

√
Q, which is shown by expanding the squares. As a consequence, the second

term in the brackets is always larger than the first, so that the whole term inside
the parenthesis is negative. It follows that the term in the curly brackets is negative,
and that the sign of f ′ is just the sign of From this we conclude that the error grows
monotonically for all parameter choices such that kr− − kw−.

Finally, the rates are parametrized in the main text by their kinetic and energetic
discriminations (δ and γ), the driving ε, and an overall time-scale ω. The kinetic
discrimination δ appears in the forward rates, so that kr+/kw+ = eδ. The driving ε is
defined for right bases, so that kr+/kr− = eε. Finally, the energetic discrimination γ
reduces the driving of wrong bases, kw+/kw− = eε−γ . Summarizing, we have:

kr+ = ωeε+δ ; kr− = ωeδ ; kw+ = ωeε ; kw− = ωeγ . (18)

The condition kr− − kw− is then equivalent to δ > γ, which we termed the case
of kinetic discrimination. Conversely, when kr− < kw− (equivalent toδ < γ) the error
decreases monotonically (regime of energetic discrimination).
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6.2 Co-polymerization model
Given the four rates kw+, kw−, kr+, and kr−, one can easily write the two rate equations
as:

∂t[&r] = [&]kr+ − [&r]k−r

∂t[&w] = [&]kw+ − [&w]k−w (19)

Following Bennett’s original approach [1], we consider the steady state in which there
are constant fluxes of wrong ∂t[&w] = Jw = ηv[&] and right ∂t[&r] = Jr = (1−η)v[&]
additions of aminoacids into the copied strain. Under these assumptions, on can show
[1, 3] that the error is given by:

kw+ − kw−η
kr+ − kr−(1− η)

=
η

1− η . (20)

while the average copying velocity is

v = kw+ − kw−η + kr+ − kr−(1− η). (21)

Using the same parametrization of the previous model, Eq. (18), we write the chemical
driving ε as a function of the energetic discrimination energy γ, the kinetic discrimi-
nation energy δ, and the steady state error η. The expression reads

ε = log

[
η(1− η)

1− eγ−δ

η − (1− η)e−δ

]
. (22)

By means of (22), the average velocity can be expressed as

v = ω
1− (1 + eγ)η

η − (1− η)e−δ
. (23)

We now want to impose that 1) the argument of the logarithm in (22) has to be
positive, and 2) the average velocity (23) should also be positive. Assuming of course
0 < η < 1, the first condition is equivalent to (δ − γ)[η − (1 + eδ)−1] > 0, while the
second is equivalent to [(1 − eγ)−1 − η][η − (1 + eδ)−1] > 0. Combining these two
conditions leads to Eq. (4) in the main text.

Finally, the dissipation per step is

∆S = η log

[
1

η

]
+ (1− η) log

[
1

1− η

]
+ η log

[
kw+
kw−

]
+ (1− η) log

[
kr+
kr−

]
=

(
η log

[
1

η

]
+ (1− η) log

[
1

1− η

])
+ (1− η)ε+ η(ε− γ), (24)

which can be expressed as a function of η, δ and γ only by using Eq. (22).

6.3 Mapping of Hopfield’s original model
In Hopfield’s formulation [2], given the template c, by interacting through C and D,
either the aminoacid PC or PD can be added to an RNA chain. Addition of PC will be
the right addition, and addition of PD will be considered an error. The rate equation
and steady state solution are:

c+ C
k′C−−⇀↽−−
kC

[cC]
v−⇀ PC and v[Cc] = k′C [C]− kC [Cc] (25)
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and analogously for D. It is assumed that [C] ∼ [D], and defined fC = [Cc]/[C] and
fD = [Dc]/[D] as the fraction of incorporated C and D monomers given a template c.
At steady state fC = 1 − fD, and fD is the error η = fD. Solving the system above
we arrive at

η

1− η =
fD
fC

=
k′D
k′C

v + kC
v + kD

(26)

Identifying these rates with those in our model according to Fig. 1, the mapping to
Hopfield’s model is finished: kC = kr−, k′C = kr+, kD = kw− and k′D = kw+.

To verify the mapping we study two limiting cases. For γ = 0 (as Bennett assumed
in [1]) we have that if v → ∞, then η/(1 − η) → k′D/k

′
C = e−δ; and if v → 0, then

η/(1 − η) → k′DkC/k
′
CkD = 1. On the other hand for δ = 0 (as Hopfield assumed in

[2]) we have that if v → ∞, then η/(1− η) → k′D/k
′
C = 1; and if v → 0, the classical

result is obtained η/(1− η)→ k′DkC/k
′
CkD = kC/kD = e−γ , in exact agreement with

the results obtained above.

6.4 Proofreading model without intermediate state
A minimal model of Kinetic Proofreading (KP) requires at least two different path-
ways. The first is the copying pathway introduced above, characterized by a driving
which tends to make the chain grow. On the other hand, the driving of the second
pathway is backward, thus undoing copies on average. The copying pathway has a bias
towards adding right bases by a faster (kinetic) and more stable (energetic) binding.
Conversely, the proofreading pathway has a bias towards removing wrong bases by
a faster and less stable unbinding. The combination of both can reduce the mini-
mal error given by the standard copy, by the discrimination factor of the proofreading
pathway. The simplest proofreading scheme consists of the copying scheme introduced
before, and a parallel reaction which we characterize by four additional proofreading
rates k̃r/w± .

6.4.1 Rates parametrization

We choose the same copying rates of the standard copying scheme, see Eq.(18). Fur-
ther, we introduce proofreading rates which are analogously characterized by a kinetic
and energetic proofreading discrimination factors (δp and γp), a backward driving εp,
and an additional time-scale ωp. In the case of proofreading, we define the driving in
the backward right additions, that is k̃r−/k̃r+ = eεp . The kinetic discrimination is also
backwards, and so k̃w−/k̃r− = eδp . Finally, the energetic discrimination is reflected in
a higher backward driving of wrong bases, such that k̃w−/k̃w+ = eεp+γp . One can then
write the proofreading rates as

k̃r− = ωpe
εp−δp ; k̃r+ = ωpe

−δp ; k̃w− = ωpe
εp ; k̃w+ = ωpe

−γp . (27)

The energy levels corresponding to this parametrization of the rates are illustrated in
Fig. (5). Notice that the end-states in the proofreading pathway have a difference
in energy γ − γp. While in some coarse grained models such a behaviour may be
justifiable through external agents, typically one would expect this difference not to
exist, so that in the main text we always fixed γp = γ. Further, we anticipate that
numerical results show that the proofreading step is always kinetic. This means that
the value of γp, as soon as it is positive, will not anyway affect the minimum error
achievable by the system.



6.4.2 Solving the model

The kinetic equations in this case are:

∂t[&r] = [&](kr+ + k̃r+)− [&r](kr− + k̃r−)

∂t[&w] = [&](kw+ + k̃w+)− [&w](kw− + k̃w−). (28)

Also in this case, the steady state solution can be obtained by considering the fluxes
of right and wrong bases added: ∂t[&w] = Jw = ηv[&] and right ∂t[&r] = Jr =
(1 − η)v[&]. The error as a function of the rates is analogous to the one for simple
copying:

kw+ + k̃w+ − η(kw− + k̃w−)

kr+ + k̃r+ − (1− η)(kr− + k̃r−)
=

η

1− η . (29)

The next step is to derive from this expression the driving ε as a function of the error,
the discriminations, and the two new additional parameters: the proofreading driving
εp and its characteristic time scale ωp. The result is:

ε = log

[
1

1− η(1 + eδ)

{
η(1− η)(eγ − eδ + ωpe

εp − ωpeεp−δp)− ωpe−γp + ηωp(e
−γp + e−δp)

}]
(30)

The velocity is also analogous to that of the simple copying scheme:

v = kw+ + k̃w+ − η(kw− + k̃w−) + kr+ + k̃r+ − (1− η)(kr− + k̃r−). (31)

However, for the entropy production rate, one has to consider the transitions corre-
ponding to the two pathways independently:

Ṡ = (kw+ − ηkw−) log

[
kw+
ηkw−

]
+ (kr+ − (1− η)kr−) log

[
kr+

(1− η)kr−

]
+ (k̃w+ − ηk̃w−) log

[
k̃w+

ηk̃w−

]
+ (k̃r+ − (1− η)k̃r−) log

[
k̃r+

(1− η)k̃r−

]
. (32)

Finally, the dissipation per step is simply calculated as ∆S = Ṡ/v.

6.4.3 Minimization procedure and numerical results

For each given value of the error η and the four parameters γ, γp, δ, δp, we identified
the values of the two remaining free parameters ωp and εp corresponding to the min-
imum dissipation per step. In order to avoid local minima, we adopted a sistematic
minimization scheme: the two parameters have been varied with a logarithmic step

20
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equal to 1.04, in an interval 10−5 < ωp, εp < 109. In this region, we found the mini-
mum dissipation per step with the constraint of a positive reaction velocity. We also
checked a posteriori that no minimum was found at the boundaries of the minimization
region.

A sistematic simulation study of the 4 possibilities of energetic/kinetic copy coupled
to energetic/kinetic proofreading is presented in Fig. (6). The results allows us for
reaching the following conclusions:

• The proofreading pathway can reduce the minimum error in the kinetic regime
only. This can be seen in the lower panels of Fig. (6), where increasing γp does
not affect the minimum achievable error. In particular, in the bottom left panel
the copying is energetic and the minimum error is given by f(γ) = e−γ/(1 +
e−γ) ≈ 0.0067 for γ = 5. In the bottom right panel, the copying is kinetic and
again the minimum error is given by f(δ) ≈ 0.0067 for δ = 5. The minima in
the two figures correspond to parameters such as the proofreading reactions has
an average forward flux instead of backward, so that the proofreading pathway
works as an effective parallel adiabatic (energetic) copying pathway.

• cooperative error reduction only takes place when both pathways are in the
kinetic region. In the top right panel, increasing δp does not reduce the error.
The only case in which the error can be reduced is in the kinetic-kinetic case of
the top right panel, where the minimum error is given by f(δ)f(δp) ≈ f(δ+δp) ≈
0.0067, 0.0009, 0.0001 for δp = 0, 2, 4 respectively. We remark that this feature
is a peculiarity of this model. We will show in the next section how including
an intermediate state in the copying pathway allows for error reduction with an
energetic copy and a kinetic proofreading.

6.5 Proofreading model with intermediate state
In this section we present more extensive results on model 4 of the main text. This
model presents some analogies with the previous one, except that copying occurs via
an intermediate state, denoted with a “*”, which is connected with the final state in
which the aminoacid is incorporated. This final state has also a proofreading step.
The overall reaction scheme is more in the spirit of Hopfield’s original proofreading
mechanism.

6.5.1 Parametrization of the rates

The forward copying rates from the unbound to the intermediate state are defined in
exactly the same way as the copying rates in the previous models, see Eq. (18). As
in Hopfield’s original model, the transition rates from the intermediate state to the
final state have no discrimination, but have their own driving ε∗ and time scale given
by ω∗. They obey the relations k̄w+/k̄r+ = 1, k̄w+/k̄w− = eε

∗
and k̄r+/k̄

r
− = eε

∗
. It is

not hard to show that adding a discrimination below that of the original copying does
not reduce the error beyond the critical error. Adding a bigger one simply reduces it
to the critical error of this secondary copy, unlike the additive effect of proofreading.
The rates can be simply written as:

k̄r+ = ω∗eε
∗

; k̄r− = ω∗ ; k̄w+ = ω∗eε
∗

; k̄w− = ω∗ (33)

The final state is then connected with the initial state by the same proofreading
rates defined in the previous section, Eq. (27). The full energy diagram is depicted
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in Fig. (7). As before, the energy difference γ − γp is irrelevant as the proofreading
step has to be a kinetic step, and so we choose it arbitrarily to be null. Again, this
corresponds to the physical requirement that the energy of the chain can not change
if no base is added.
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Fig. 5: Energy diagram of the reactions corresponding to the proofreading
scheme with no intermediate steps.
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Fig. 6: Study of the four possible combination of energetic/kinetic discrimina-
tion and energetic/kinetic proofreading in Bennett’s model. In the left
panels the copy is energetic; in particular we chose δ = 0 and γ = 5.
Conversely, in the right panels the copy is kinetic with δ = 5 and γ = 0.
In the top panels the proofreading scheme is purely kinetic (γp = 0),
while in the bottom panel we fixed δp = 0 and varied γp.
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Fig. 7: Energy diagram of the reactions corresponding to the proofreading
scheme with an intermediate step.

6.5.2 Solving the model

With the notation introduced in the previous section, it is easy to write the four kinetic
equations of this proofreading scheme:

∂t[R] = [R∗]k̄r+ + [&]k̃r+ − [R](k̄r− + k̃r−)

∂t[W ] = [W ∗]k̄w+ + [&]k̃w+ − [W ](k̄w− + k̃w−)

∂t[R
∗] = [&]kr+ + [R]k̄r− − [R∗](kr− + k̄r+)

∂t[W
∗] = [&]kw− + [W ]kw∗− − [W ∗](kw− + k̄w+). (34)

25
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The easiest way to obtain the solution is by flux balance at the steady state of constant
growth velocity v, which corresponds to:

[W ]v = ([&]k̃w+ − [W ]k̃w−) + ([W ∗]k̄w+ − [W ]k̄w−)

[&]kw+ − [W ∗]kw− = [W ∗]k̄w+ − [W ]k̄w−

[R]v = ([&]k̃r+ − [R]k̃r−) + ([R∗]k̄r+ − [R]k̄r−)

[&]kr+ − [R∗]kr− = [R∗]k̄r+ − [R]k̄r−. (35)

As before, we seek equations to determine the error rate and the velocity as a function
of the rates. We proceed by dividing each of the equations in section by & and define
W/& = η, R/& = (1 − η), W ∗/& = w∗, R∗/& = r∗. By means of the 2nd and 4th
equations we find an expression for r∗ and w∗:

w∗ =
kw+ + ηk̄w−
kw− + k̄w+

r∗ =
kr+ + (1− η)k̄r−

kr− + k̄r+
. (36)

Substituting into the other 2 equations lead to two coupled equations for η and v.

ηv = (k̃w+ − ηk̃w−) +

[
k̄w+

kw+ + ηk̄w−
kw− + k̄w+

− ηk̄w−
]

(1− η)v = [k̃r+ − (1− η)k̃r−] +

[
k̄r+

kr+ + (1− η)k̄r−
kr− + k̄r+

− (1− η)k̄r−

]
. (37)

Now we multiply the first equation by (1−η), the second by η and subtract the second
from the first to find a closed expression for η:

(1− η)(k̃w+ − ηk̃w−) + (1− η)

[
k̄w+

kw+ + ηk̄w−
kw− + k̄w+

− ηk̄w−
]

−η[k̃r+ − (1− η)k̃r−]− η
[
k̄r+

kr+ + (1− η)k̄r−
kr− + k̄r+

− (1− η)k̄r−

]
= 0. (38)

Again, this formula can be inverted to obtain the copying driving ε as a function
of η and the other energy differences:

eε =
ηωpe

−δp − (1− η)ωpe
−γp + η(1− η)

(
ωpe

εp(1− e−δp) + (ω∗2eε
∗

)(eγ−eδ)

(eδ+ω∗eε∗ )(eγ+ω∗eε∗ )

)
ω∗eε∗

(
1−η

eγ+ω∗eε∗
− ηeδ

eδ+ω∗eε∗

) .

(39)
The velocity is straightforward to calculate from one of the expressions in (37),

and is simply:

v =

(
k̃w+
η
− k̃w−

)
+

[
k̄w+
η

kw+ + ηk̄w−
kw− + k̄w+

− k̄w−
]

(40)

Finally, we calculate the entropy production by summing the six contributions of
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the local fluxes of the system. This results in the following lengthy expression:

&Ṡ = (&kw+ −W ∗kw−) log

[
&kw+
W ∗kw−

]
+ (W ∗k̄w+ −Wk̄w−) log

[
W ∗k̄w+
Wk̄w−

]

+ (&k̃w+ −Wk̃w−) log

[
&k̃w+

Wk̃w−

]
+ (&kr+ −R∗kr−) log

[
&kr+
R∗kr−

]

+ (R∗k̄r+ −Rk̄r−) log

[
R∗k̄r+
Rk̄r−

]
+ (&k̃r+ −Rk̃r−) log

[
&k̃r+

Rk̃r−

]
. (41)

Dividing by & and using the expressions for r∗, w∗ and η, we obtain the rate of entropy
production:

Ṡ = (kw+ −
kw+ + ηk̄w−
kw− + k̄w+

kw−) log

[
(kw− + k̄w+)kw+
(kw+ + ηk̄w−)kw−

]
+ (

kw+ + ηk̄w−
kw− + k̄w+

k̄w+ − ηk̄w−) log

[
(kw+ + ηk̄w−)k̄w+
(kw− + k̄w+)ηk̄w−

]

+ (k̃w+ − ηk̃w−) log

[
k̃w+

ηk̃w−

]

+ (kr+ −
kr+ + (1− η)k̄r−

kr− + k̄r+
kr−) log

[
(kr− + k̄r+)kr+

(kr+ + (1− η)k̄r−)kr−

]
+ (

kr+ + (1− η)k̄r−
kr− + k̄r+

k̄r+ − (1− η)k̄r−) log

[
(kr+ + (1− η)k̄r−)k̄r+
(kr− + k̄r+)(1− η)k̄r−

]

+ (k̃r+ − (1− η)k̃r−) log

[
k̃r+

(1− η)k̃r−

]
. (42)

6.5.3 Minimization procedure and numerical results

In analogy with the previous model, for each value of the parameters δ, δp, γ and γp
and the variable η we found the values of the free parameters corresponding to the
minimum dissipation per step. In this case we had to minimize with respect to four
free parameters: ωp, εp, ω∗ and ε∗. Given the number of parameters, we implemented
a larger logarithmic minimization step, equal to 1.2.

The result of Fig. (8) are consistent to those of the previous model, see Fig. (6).
The only important difference is:

• The presence of an additional step in the copying pathway allows for error
reduction via an energetic copy - kinetic proofreading scheme. This can be seen
in the top left panel of Fig. (8), where the minimum error does depend on δp
via the usual function f(γ)f(δp) ≈ f(γ + δp). This is at variance with model 3,
shown in Fig. (6), where the minumum error in the same case was simply equal
to f(γ).
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Fig. 8: Study of the four possible combination in the proofreading model with an
intermediate state. In the left panels the copy is energetic; in particular
we chose δ = 0 and γ = 5. Conversely, in the right panels the copy is
kinetic with δ = 5 and γ = 0. In the top panels the proofreading scheme
is purely kinetic (γp = 0), while in the bottom panel we fixed δp = 0 and
varied γp.
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